
Average-case quantum query complexity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 6741

(http://iopscience.iop.org/0305-4470/34/35/302)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 02/06/2010 at 09:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 6741–6754 PII: S0305-4470(01)19314-5

Average-case quantum query complexity*

Andris Ambainis1 and Ronald de Wolf2

1 Computer Science Department, University of California, Berkeley, CA 94720, USA
2 CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands

E-mail: ambainis@cs.berkeley.edu and rdewolf@cwi.nl

Received 21 November 2000
Published 24 August 2001
Online at stacks.iop.org/JPhysA/34/6741

Abstract
We compare classical and quantum query complexities of total Boolean
functions. It is known that for worst-case complexity, the gap between
quantum and classical can be at most polynomial. We show that for average-
case complexity under the uniform distribution, quantum algorithms can be
exponentially faster than classical algorithms. Under non-uniform distributions
the gap can even be super-exponential. We also prove some general bounds for
average-case complexity and show that the average-case quantum complexity
of MAJORITY under the uniform distribution is nearly quadratically better
than the classical complexity.

PACS numbers: 03.67.-a, 02.10.Ab, 02.10.De, 02.50.Cw, 03.65.Ta

1. Introduction

The field of quantum computation studies the power of computers based on quantum
mechanical principles. So far, most quantum algorithms—and all physically implemented
ones—have operated in the so-called black-box setting. In the black-box model, the input
of the function f that we want to compute can only be accessed by means of queries to a
‘black box’. This returns the ith bit of the input when queried on i. The complexity of
computing f is measured by the required number of queries. In this setting we want quantum
algorithms that use significantly fewer queries than the best classical algorithms. Examples
of quantum black-box algorithms that are provably better than any classical algorithm can be
found in [6, 7, 9, 12, 14, 25]. Even Shor’s quantum algorithm for period-finding, which is the
core of his efficient factoring algorithm [24], can be viewed as a black-box algorithm [11].

We restrict our attention to computing total Boolean functions f on N variables.
The query complexity of f depends on the kind of error one allows. For example, we
can distinguish between exact computation, zero-error computation (a.k.a. Las Vegas) and

* A preliminary version of this paper appeared in the Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’2000) (Lecture Notes in Computer Science vol 1770) (Berlin: Springer).

0305-4470/01/356741+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6741

http://stacks.iop.org/ja/34/6741

6742 A Ambainis and R de Wolf

bounded-error computation (Monte Carlo). In each of these models, worst-case complexity
is usually considered: the complexity is the number of queries required for the ‘hardest’
input. Let D(f), R(f) and Q(f) denote the worst-case query complexity of computing
f for classical deterministic algorithms, classical randomized bounded-error algorithms and
quantum bounded-error algorithms, respectively. More precise definitions will be given in the
next section. Since quantum bounded-error algorithms are at least as powerful as classical
bounded-error algorithms, and classical bounded-error algorithms are at least as powerful as
deterministic algorithms, we have Q(f) � R(f) � D(f). The main quantum success here is
Grover’s algorithm [14]. It can compute the OR-function with bounded error using 	(

√
N)

queries (which is optimal [4, 5, 27]). Thus Q(OR) ∈ 	(
√
N), whereas D(OR) = N and

R(OR) ∈ 	(N). This is the biggest gap known between quantum and classical worst-case
complexities for total functions. (In contrast, for partial Boolean functions the gap can be
much bigger [11,12,25].) In fact, it is known that the gap between D(f) and Q(f) is at most
polynomial for every total f : D(f) ∈ O(Q(f)6) [3]. This is similar to the best known relation
between classical deterministic and randomized algorithms: D(f) ∈ O(R(f)3) [21].

Given some probability distribution µ on the set of inputs {0, 1}N one may also consider
average-case complexity instead of worst-case complexity. Average-case complexity concerns
the expected number of queries needed when the input is distributed according to µ. If the hard
inputs receive little µ-probability, then average-case complexity can be significantly smaller
than worst-case complexity. Let Dµ(f), Rµ(f) and Qµ(f) denote the average-case analogues
of D(f), R(f) and Q(f), respectively, to be defined more precisely in the next section. Again
Qµ(f) � Rµ(f) � Dµ(f). The objective of this paper is to compare these measures and to
investigate the possible gaps between them. Our main results are:

• Under uniform µ, Qµ(f) and Rµ(f) can be super-exponentially smaller than Dµ(f).
• Under uniform µ, Qµ(f) can be exponentially smaller than Rµ(f). Thus the polynomial

relation that holds between quantum and classical query complexities in the case of worst-
case complexity [3] does not carry over to the average-case setting.

• Under non-uniform µ the gap can be even larger: we give distributions µ where Qµ(OR)

is constant, whereas Rµ(OR) is almost
√
N .

• For every f and µ, Rµ(f) is lower bounded by the expected block sensitivity Eµ[bs(f)]
and Qµ(f) is lower bounded by Eµ[

√
bs(f)].

• For the MAJORITY function under uniform µ, we have that Qµ(f) ∈ O(
√
N(logN)2)

and Qµ(f) ∈ �(
√
N). In contrast, Rµ(f) ∈ �(N).

• For the PARITY function, the gap between Qµ and Rµ can be quadratic, but not more.
Under uniform µ, PARITY has Qµ(f) ∈ �(N).

2. Definitions

Let f : {0, 1}N → {0, 1} be a Boolean function. This function is symmetric if f (X) only
depends on |X|, the Hamming weight (the number of ones) of X. We will in particular consider
the following symmetric functions: OR(X) = 1 iff |X| � 1; MAJ(X) = 1 iff |X| > N/2;
PARITY(X) = 1 iff |X| is odd. If X ∈ {0, 1}N is an input and S a set of (indices of) variables,
we use XS to denote the input obtained by flipping the values of the S-variables in X. The
block sensitivity bsX(f) of f on an input X is the maximal number b for which there are b

disjoint sets of variables S1, . . . , Sb such that f (X) 	= f (XSi) for all 1 � i � b. The block
sensitivity bs(f) of f is maxX bsX(f).

We are interested in the question of how many bits of the input have to be queried in
order to compute f , either for the worst- or average-case input. We assume familiarity with

Average-case quantum query complexity 6743

classical computation and briefly sketch the definition of quantum query algorithms. For a
general introduction to quantum computing, see the book of Nielsen and Chuang [20]. For
more details about (quantum) query complexity we refer to [10].

An m-qubit state is a 2m-dimensional unit vector of complex numbers, written∑
x∈{0,1}m αx |x〉. The complex number αx is called the amplitude of the basis state |x〉. A

T -query quantum algorithm corresponds to a unitary transformation

A = UT OUT−1O · · ·U1OU0.

Here the Uj are unitary transformations on m qubits. These Uj are independent of the
input. Each O corresponds to a query to the input X ∈ {0, 1}N , formalized as the unitary
transformation

|i, b, z〉 → |i, b ⊕ xi, z〉.
Here i ∈ {1, . . . , N}, b ∈ {0, 1}, ⊕ is addition modulo 2 and z ∈ {0, 1}m−logN−1 is the
workspace, which remains unaffected by the query. Intuitively, O just gives us the bit xi

when queried on i. We will sometimes use the word ‘oracle’ to refer to X as well as to the
corresponding O. The initial state of the algorithm is the all-zero state |0m〉. The final state
is A|0m〉, which depends on the input X via the T queries that are made. A measurement
of a dedicated output bit of the final state will yield the output. It can be shown that this
linear-algebraic quantum model is at least as strong as classical randomized computation: any
classical T -query randomized algorithm can be simulated by a T -query quantum algorithm
having the same error probabilities.

As described above, the quantum algorithm will make exactly T queries on every input
X. Since we are interested in an average-case number of queries and the required number of
queries will depend on the input X, we need to allow the algorithm to give an output after
fewer than T queries. We will do that by measuring, after each Uj , a dedicated flag-qubit of
the intermediate state at that point (this measurement may alter the state). This bit indicates
whether the algorithm is already prepared to stop and output a value. If this bit is 1, then we
measure the output bit, output its value A(X) ∈ {0, 1} and stop; if the flag-bit is 0 we let the
algorithm continue with the next query O and Uj+1. Note that the number of queries that the
algorithm makes on input X is now a random variable, since it depends on the probabilistic
outcome of measuring the flag-qubit after each step. We use TA(X) to denote the expected
number of queries that A makes on input X. The Boolean output A(X) of the algorithm is a
random variable as well.

We mainly focus on three kinds of algorithm for computing f : classical deterministic,
classical randomized bounded-error and quantum bounded-error algorithms. Let D(f) denote
the set of classical deterministic algorithms that compute f . Let R(f) = {classical A |
∀X ∈ {0, 1}N : Pr[A(X) = f (X)] � 2/3} be the set of classical randomized algorithms that
compute f with bounded error probability. The error probability one-third is not essential;
it can be reduced to any small ε by running the algorithm O(log(1/ε)) times and outputting
the majority answer of those runs. Similarly we let Q(f) = {quantum A | ∀X ∈ {0, 1}N :
Pr[A(X) = f (X)] � 2/3} be the set of bounded-error quantum algorithms for f . We define
the following worst-case complexities:

D(f) = min
A∈D(f)

max
X∈{0,1}N

TA(X)

R(f) = min
A∈R(f)

max
X∈{0,1}N

TA(X)

Q(f) = min
A∈Q(f)

max
X∈{0,1}N

TA(X).

D(f) is also known as the decision tree complexity of f and R(f) as the bounded-
error decision tree complexity of f . Since quantum computation generalizes randomized

6744 A Ambainis and R de Wolf

computation and randomized computation generalizes deterministic computation, we have
Q(f) � R(f) � D(f) � N for all f . The three worst-case complexities are polynomially
related: D(f) ∈ O(R(f)3) [21] and D(f) ∈ O(Q(f)6) [3] for all total f .

Let µ : {0, 1}N → [0, 1] be a probability distribution. We define the average-case
complexity of an algorithm A with respect to a distribution µ as

T
µ

A =
∑

X∈{0,1}N
µ(X)TA(X).

The average-case deterministic, randomized and quantum complexities of f with respect to µ

are

Dµ(f) = min
A∈D(f)

T
µ

A

Rµ(f) = min
A∈R(f)

T
µ

A

Qµ(f) = min
A∈Q(f)

T
µ

A .

Note that the algorithms still have to satisfy the appropriate output requirements (such as
outputting f (X) with probability � 2/3 in the case of Rµ or Qµ) on all inputs X, even on X

that have µ(X) = 0. Clearly Qµ(f) � Rµ(f) � Dµ(f) � N for all µ and f . Our goal is
to examine how large the gaps between these measures can be, in particular for the uniform
distribution unif(X) = 2−N .

The above treatment of average-case complexity is the standard one used in average-
case analysis of algorithms [26]. One counter-intuitive consequence of these definitions,
however, is that the average-case performance of polynomially related algorithms can be
superpolynomially apart (we will see this happen in section 5). This seemingly paradoxical
effect makes these definitions unsuitable for dealing with polynomial-time reducibilities and
average-case complexity classes, which is what led Levin to his alternative definition of
‘polynomial time on average’ [16]3. Nevertheless, we feel our definitions are the appropriate
ones for our query complexity setting: they are just the average numbers of queries that one
needs when the input is drawn according to distribution µ.

3. Super-exponential gap between Dunif (f) and Qunif (f)

Before comparing the power of classical and quantum computing, we first compare the power
of deterministic and bounded-error algorithms. It is not hard to show that Dunif(f) can be
much larger then Runif(f) and Qunif(f):

Theorem 3.1. Define f on N variables such that f (X) = 1 iff |X| � N/10. Then Qunif(f)

and Runif(f) are O(1) and Dunif(f) ∈ �(N).

Proof. Suppose we randomly sample k bits of the input. Let a = |X|/N denote the fraction
of ones in the input and ã the fraction of ones in the sample. The Chernoff bound (see e.g. [1])
implies that there is a constant c > 0 such that

Pr[ã〈2/10|a � 3/10] � 2−ck.

Now consider the following randomized algorithm for f :

(1) Let i = 100.
(2) Sample ki = i/c bits. If the fraction ãi of ones is � 2/10, then output 1 and stop.
(3) If i < logN , then increase i by 1 and repeat step 2.

3 We thank Umesh Vazirani for drawing our attention to this.

Average-case quantum query complexity 6745

(4) If i � logN , then count |X| exactly using N queries and output the correct answer.

It is easy to see that this is a bounded-error algorithm for f . Let us bound its average-case
complexity under the uniform distribution.

If a � 3/10, the expected number of queries for step 2 is
logN∑
i=100

Pr[ã1 � 2/10, . . . , ãi−1 � 2/10 | a � 3/10] · i

c

�
logN∑
i=100

Pr[ãi−1 � 2/10 | a � 3/10] · i

c

�
logN∑
i=100

2−(i−1) · i

c
∈ O(1).

The probability that step 4 is needed (given a � 3/10) is at most 2−c logN/c = 1/N . This adds
1
N
N = 1 to the expected number of queries.

Under the uniform distribution, the probability of the event a < 3/10 is at most 2−c′N

for some constant c′. This case contributes at most 2−c′N(N + (logN)2) ∈ o(1) to the
expected number of queries. Thus in total the algorithm uses O(1) queries on average, hence
Runif(f) ∈ O(1). Since Qunif(f) � Runif(f), we also have Qunif(f) ∈ O(1).

Since a deterministic classical algorithm for f must be correct on every input X, it is easy
to see that it must make at least N/10 queries on every input, hence Dunif(f) � N/10. �

Accordingly, we can have huge gaps between Dunif(f) and Qunif(f). However, this
example tells us nothing about the gaps between quantum and classical bounded-error
algorithms. In the next section we exhibit an f where Qunif(f) is exponentially smaller
than the classical bounded-error complexity Runif(f).

4. Exponential gap between Runif (f) and Qunif (f)

4.1. The function

We use the following modification of Simon’s problem [25]4:

Input: X = (x1, . . . , x2n), where each xi ∈ {0, 1}n.
Output: f (X) = 1 iff there is a non-zero k ∈ {0, 1}n such that for all i ∈ {0, 1}n we have
xi⊕k = xi .

Here we treat i ∈ {0, 1}n both as an n-bit string and as a number between 1 and 2n,
and ⊕ denotes bitwise XOR. Note that this function is total (unlike Simon’s). Formally, f
is not a Boolean function because the variables are {0, 1}n-valued. However, we can replace
every variable xi by n Boolean variables and then f becomes a Boolean function of N = n2n

variables. The number of queries needed to compute the Boolean function is at least the
number of queries needed to compute the function with {0, 1}n-valued variables (because
we can simulate a query to the Boolean oracle by means of a query to the {0, 1}n-valued
input-variables, just ignoring the n − 1 bits that we are not interested in) and at most n times
the number of queries to the {0, 1}n-valued oracle (because one {0, 1}n-valued query can be
simulated using n Boolean queries). As the numbers of queries are so closely related, it does
not make a big difference whether we use the {0, 1}n-valued oracle or the Boolean oracle. For
simplicity we count queries to the {0, 1}n-valued oracle.

4 The preprint [15] independently proves a related but incomparable result about another Simon modification.

6746 A Ambainis and R de Wolf

We are interested in the average-case complexity of this function. The main result is the
following exponential gap, to be proven in the next sections:

Theorem 4.1. For f as above, Qunif(f) � 22n + 1 and Runif(f) ∈ �(2n/2).

4.2. Quantum upper bound

The quantum algorithm is similar to Simon’s. Start with the 2-register superposition∑
i∈{0,1}n |i〉|0〉 (for convenience we ignore normalizing factors). Apply the oracle once to

obtain ∑
i∈{0,1}n

|i〉|xi〉.

Measuring the second register gives some j and collapses the first register to∑
i:xi=j

|i〉.

A Hadamard transform H maps bits |b〉 → 1√
2
(|0〉 + (−1)b|1〉). Applying this to each qubit

of the first register gives∑
i:xi=j

∑
i ′∈{0,1}n

(−1)(i,i
′)|i ′〉. (1)

Here (a, b) denotes inner product mod 2; if (a, b) = 0 we say a and b are orthogonal.
If f (X) = 1, then there is a non-zero k such that xi = xi⊕k for all i. In particular, xi = j

iff xi⊕k = j . Then the final state (1) can be rewritten as∑
i ′∈{0,1}n

∑
i:xi=j

(−1)(i,i
′)|i ′〉 =

∑
i ′∈{0,1}n

(∑
i:xi=j

1
2 ((−1)(i,i

′) + (−1)(i⊕k,i ′))

)
|i ′〉

=
∑

i ′∈{0,1}n

(∑
i:xi=j

(−1)(i,i
′)

2
(1 + (−1)(k,i

′))

)
|i ′〉.

Notice that |i ′〉 has non-zero amplitude only if (k, i ′) = 0. Hence if f (X) = 1, then measuring
the final state gives some i ′ orthogonal to the unknown k.

To decide whether f (X) = 1, we repeat the above process m = 22n times. Let
i1, . . . , im ∈ {0, 1}n be the results of the m measurements. If f (X) = 1, there must be a
non-zero k that is orthogonal to all ir . Compute the subspace S ⊆ {0, 1}n that is generated
by i1, . . . , im (i.e. S is the set of binary vectors obtained by taking linear combinations of
i1, . . . , im over GF(2)). If S = {0, 1}n, then the only k that is orthogonal to all ir is k = 0n, so
then we know that f (X) = 0. If S 	= {0, 1}n, we just query all 2n values x0...0, . . . , x1...1 and
then compute f (X). Of course, this latter step is very expensive, but it is needed only rarely:

Lemma 4.2. Assume that X = (x0...0, . . . , x1...1) is chosen uniformly at random from {0, 1}N .
Then, with probability at least 1 − 2−n, f (X) = 0 and the measured i1, . . . , im generate
{0, 1}n.

Proof. It can be shown by a small modification of [1, theorem 5.1, p 91] that with probability
at least 1 − 2−c2n

(c > 0), there are at least 2n/8 values j such that xi = j for exactly one
i ∈ {0, 1}n (and hence f (X) = 0). We assume that this is the case in the following.

If i1, . . . , im generate a proper subspace of {0, 1}n, then there is a non-zero k ∈ {0, 1}n that
is orthogonal to this subspace. We estimate the probability that this happens. Consider some
fixed non-zero vector k ∈ {0, 1}n. The probability that i1 and k are orthogonal is at most 15

16 ,
as follows. With probability at least 1/8, the measurement of the second register gives j such

Average-case quantum query complexity 6747

that f (i) = j for a unique i. In this case, the measurement of the final superposition (1) gives
a uniformly random i ′. The probability that a uniformly random i ′ has (k, i ′) 	= 0 is one-half.
Therefore, the probability that (k, i1) = 0 is at most 1 − 1

8 · 1
2 = 15

16 .
The vectors i1, . . . , im are chosen independently. Therefore, the probability that k is

orthogonal to each of them is at most (15
16)

m = (15
16)

22n < 2−2n. There are 2n − 1 possible
non-zero k, so the probability that there is a k which is orthogonal to each of i1, . . . , im is
� (2n − 1)2−2n < 2−n. �

Note that this algorithm is actually a zero-error algorithm: it always outputs the correct
answer. Its expected number of queries on a uniformly random input is at most m = 22n for
generating i1, . . . , im and at most 1

2n 2n = 1 for querying all the xi if the first step does not give
i1, . . . , im that generate {0, 1}n. This completes the proof of the first part of theorem 4.1. In
contrast, in the appendix we show that the worst-case zero-error quantum complexity of f is
�(N), which is near maximal.

4.3. Classical lower bound

Let D1 be the uniform distribution over all inputs X ∈ {0, 1}N and D2 be the uniform
distribution over all X for which there is a unique k 	= 0 such that xi = xi⊕k (and hence
f (X) = 1). We say an algorithm A distinguishes between D1 and D2 if the average probability
that A outputs 0 is � 2/3 under D1 and the average probability that A outputs 1 is � 2/3 under
D2.

Lemma 4.3. If there is a bounded-error algorithm A that computes f with m = T unif
A queries

on average, then there is an algorithm that distinguishes between D1 and D2 and uses O(m)

queries on all inputs.

Proof. Without loss of generality we assume A has error probability � 1/10. To distinguish
D1 and D2, we run A until it stops or makes 10m queries. If it stops, we output the result of
A. If it makes 10m queries and has not stopped yet, we output 1.

Under D1, the probability that A outputs 1 is at most 1/10 + o(1) (1/10 is the maximum
probability of error on an input with f (X) = 0 and o(1) is the probability of getting an
input with f (X) = 1), so the probability that A outputs 0 is at least 9/10 − o(1). The
average probability (under D1) that A does not stop before 10m queries is at most one-
tenth, for otherwise the average number of queries would be more than 1

10 (10m) = m.
Therefore the probability under D1 that A outputs 0 after at most 10m queries is at least
(9/10−o(1))−1/10 = 4/5−o(1). In contrast, the D2-probability that A outputs 0 is � 1/10
because f (X) = 1 for any input X from D2. This shows that we can distinguish D1 from
D2. �

Lemma 4.4. A classical randomized algorithm A that makes m ∈ o(2n/2) queries cannot
distinguish between D1 and D2.

Proof. For a random input from D1, the probability that all answers to m queries are different
is

1 ·
(

1 − 1

2n

)
· · ·

(
1 − (m − 1)

2n

)
� 1 −

m−1∑
i=1

i

2n
= 1 − m(m − 1)

2n+1
= 1 − o(1).

For a random input from D2, the probability that there is an i such that A queries both xi and
xi⊕k (k is the hidden vector) is �

(
m

2

)
/(2n − 1) ∈ o(1), since:

(1) for every pair of distinct i, j , the probability that i = j ⊕ k is 1/(2n − 1) and

6748 A Ambainis and R de Wolf

(2) since A queries only m of the xi , it queries only
(
m

2

)
distinct pairs i, j .

If no pair xi , xi⊕k is queried, the probability that all answers are different is

1 ·
(

1 − 1

2n−1

)
· · ·

(
1 − (m − 1)

2n−1

)
= 1 − o(1).

It is easy to see that all sequences of m different answers are equally likely. Therefore, for
both distributions D1 and D2, we get a uniformly random sequence of m different values
with probability 1 − o(1) and something else with probability o(1). Thus A cannot ‘see’ the
difference between D1 and D2 with sufficient probability to distinguish between them. �

The second part of theorem 4.1 now follows: a classical algorithm that computes f with
an average number of m queries can be used to distinguish between D1 and D2 with O(m)

queries (lemma 4.3), but then O(m) ∈ �(2n/2) (lemma 4.4).

5. Super-exponential gap for non-uniform µ

The last section gave an exponential gap between Qµ and Rµ under uniform µ. Here we show
that the gap can be even larger for non-uniform µ. Consider the average-case complexity of
the OR-function. It is easy to see that Dunif(OR), Runif(OR) and Qunif(OR) are all O(1), since
the average input will have many ones under the uniform distribution. Now we give some
examples of non-uniform distributions µ where Qµ(OR) is super-exponentially smaller than
Rµ(OR):

Theorem 5.1. If α ∈ (0, 1/2) and µ(X) = c/
(
N

|X|
)
(|X| + 1)α(N + 1)1−α (c ≈ 1 − α is a

normalizing constant), then Rµ(OR) ∈ 	(Nα) and Qµ(OR) ∈ 	(1).

Proof. Any classical algorithm for OR requires 	(N/(|X| + 1)) queries on an input X.
The upper bound follows from random sampling, the lower bound from a block-sensitivity
argument [21]. Hence (omitting the intermediate 	s)

Rµ(OR) =
∑
X

µ(X)
N

|X| + 1

=
N∑
t=0

cNα

(t + 1)α+1
∈ 	(Nα)

where the last step can be shown by approximating the sum over t with an integral. Similarly,
for a quantum algorithm 	(

√
N/(|X| + 1)) queries are necessary and sufficient on an input

X [5, 14], so

Qµ(OR) =
∑
X

µ(X)

√
N

|X| + 1

=
N∑
t=0

cNα−1/2

(t + 1)α+1/2
∈ 	(1).

�

In particular, forα = 1/2−εwe have the very large gap of O(1)quantum versus�(N1/2−ε)

classical. Note that we obtain this super-exponential gap by weighing the complexity of two
algorithms (classical and quantum OR-algorithms) which are only quadratically apart on each
input X. This is the phenomenon we referred to at the end of section 2.

Average-case quantum query complexity 6749

6. General bounds for average-case complexity

In this section we prove some general bounds. First we make precise the intuitively obvious
fact that if an algorithm A is faster on every input than another algorithm B, then it is also
faster on average under any distribution:

Theorem 6.1. If φ : R → R is a concave function and TA(X) � φ(TB(X)) for all X, then
T

µ

A � φ
(
T

µ

B

)
for every µ.

Proof. By Jensen’s inequality, if φ is concave then Eµ[φ(T)] � φ(Eµ[T]), hence

T
µ

A =
∑

X∈{0,1}N
µ(X)TA(X)

�
∑

X∈{0,1}N
µ(X)φ(TB(X))

� φ

(∑
X∈{0,1}N

µ(X)TB(X)

)
= φ

(
T

µ

B

)
.

�
In other words: taking the average cannot make the complexity-gap between two

algorithms smaller. For instance, if TA(X) �
√
TB(X) (say, A is Grover’s algorithm and

B is a classical algorithm for OR), then T
µ

A �
√
T

µ

B . On the other hand, taking the average
can make the gap much larger, as we saw in theorem 5.1: the quantum algorithm for OR runs
only quadratically faster than any classical algorithm on each input, but the average-case gap
between quantum and classical can be much bigger than quadratic.

We now prove a general lower bound on Rµ and Qµ. The classical case of the following
lemma was shown in [21], the quantum case in [3]:

Lemma 6.2. Let A be a bounded-error algorithm for some function f . If A is classical then
TA(X) ∈ �(bsX(f)), and if A is quantum then TA(X) ∈ �(

√
bsX(f)).

A lower bound in terms of the µ-expected block sensitivity follows:

Theorem 6.3. For all f , µ: Rµ(f) ∈ �(Eµ[bsX(f)]) and Qµ(f) ∈ �(Eµ[
√
bsX(f)]).

7. Average-case complexity of MAJORITY

Here we examine the average-case complexity of the MAJORITY function. The hard inputs
for MAJORITY occur when t = |X| ≈ N/2. Any quantum algorithm needs �(N) queries
for such inputs [3]. Since the uniform distribution puts most probability on the set of X with
|X| close to N/2, we might expect an �(N) average-case complexity as well. However, we
will prove that the complexity is nearly

√
N . For this we need the following result about

approximate quantum counting, which is theorem 13 of [6] (this is the forthcoming journal
version of [8] and [17]; see also [18, theorem 1.10]):

Theorem 7.1 (Brassard, Høyer, Mosca, Tapp). There exists a quantum algorithm QCount
with the following property. For every N -bit input X (with t = |X|) and number of queries T ,
and any integer k � 1, QCount uses T queries and outputs a number t̃ such that

|t − t̃ | � 2πk

√
t (N − t)

T
+ π2k2 N

T 2

with probability at least 8/π2 if k = 1 and probability � 1 − 1/2(k − 1) if k > 1.

6750 A Ambainis and R de Wolf

Using repeated applications of this quantum counting routine we can obtain a quantum
algorithm for MAJORITY that is fast on average:

Theorem 7.2. Qunif(MAJ) ∈ O(
√
N(logN)2).

Proof. For all i ∈ {1, . . . , logN}, define Ai = {X | N/2i+1 < ||X| − N/2| � N/2i}. The
probability under the uniform distribution of getting an input X ∈ Ai is µ(Ai) ∈ O(

√
N/2i),

since the number of inputs X with k ones is
(
N

k

) ∈ O(2N/
√
N) for all k. The idea of our

algorithm is to have logN runs of the quantum counting algorithm, with increasing numbers
of queries, such that the majority value of inputs from Ai is probably detected around the
ith counting stage. We will use Ti = 100 · 2i logN queries in the ith counting stage. Our
MAJORITY algorithm is the following:

For i = 1 to logN do:

quantum count |X| using Ti queries (call the estimate t̃i)
if |t̃i − N/2| > N/2i , then output whether t̃i > N/2 and stop.

Classically count |X| using N queries and output its majority.

Let us analyse the behaviour of the algorithm on an input X ∈ Ai . For t = |X|, we have
|t − N/2| ∈ (N/2i+1, N/2i]. By theorem 7.1, with probability > 1 − 1/10 logN we
have

∣∣t̃i − t
∣∣ � N/2i , so with probability (1 − 1/10 logN)logN ≈ e−1/10 > 0.9 we have∣∣t̃i − t

∣∣ � N/2i for all 1 � i � N . This ensures that the algorithm outputs the correct value
with high probability.

We now bound the expected number of queries the algorithm needs on input X. Consider
the (i +2)nd counting stage. With probability 1−1/10 logN we will have |t̃i+2 − t | � N/2i+2.
In this case the algorithm will terminate, because

|t̃i+2 − N/2| � |t − N/2| − |t̃i+2 − t | > N/2i+1 − N/2i+2 = N/2i+2.

Thus with high probability the algorithm needs no more than i + 2 counting stages on
input X. Later counting stages take exponentially more queries (Ti+2+j = 2j Ti+2), but are
needed only with exponentially decreasing probability O(1/2j logN): the probability that
|t̃i+2+j − t | > N/2i+2 goes down exponentially with j precisely because the number of queries
goes up exponentially. Similarly, the last step of the algorithm (classical counting) is needed
only with negligible probability.

Now the expected number of queries on input X can be upper bounded by
i+2∑
j=1

Ti +
logN∑
k=i+3

Tk · O

(
1

2k−i−3 logN

)
< 100 · 2i+3 logN +

logN∑
k=i+3

100 · 2i+3 ∈ O(2i logN).

Therefore under the uniform distribution the average expected number of queries can be upper
bounded by

∑logN

i=1 µ(Ai)O(2i logN) ∈ O(
√
N(logN)2). �

The nearly matching lower bound is:

Theorem 7.3. Qunif(MAJ) ∈ �(
√
N).

Proof. Let A be a bounded-error quantum algorithm for MAJORITY. It follows from the
worst-case results of [3] that A uses �(N) queries on the hardest inputs, which are the X with
|X| = N/2 ± 1. Since the uniform distribution puts �(1/

√
N) probability on the set of such

X, the average-case complexity of A is at least �(1/
√
N)�(N) = �(

√
N). �

What about the classical average-case complexity of MAJORITY? Alonso et al [2] prove
the bound Dunif(MAJ) = 2N/3−√

8N/9π + O(logN) for deterministic classical computers.
We can also prove a linear lower bound for the bounded-error classical complexity, using the
following lemma:

Average-case quantum query complexity 6751

Lemma 7.4. Let - ∈ {1, . . . ,√N}. Any classical bounded-error algorithm that computes
MAJORITY on inputs X with |X| ∈ {N/2, N/2 + -} must make �(N) queries on all such
inputs.

Proof. We will prove the lemma for - = √
N , which is the hardest case. We assume without

loss of generality that the algorithm queries its input X at T (X) random positions, and outputs
1 if the fraction of ones in its sample is at least (N/2 + -)/N = 1/2 + 1/

√
N . We do not care

what the algorithm outputs otherwise. Consider an input X with |X| = N/2. The algorithm
uses T = T (X) queries and should output 0 with probability at least two-thirds. Thus the
probability of output 1 on X must be at most one-third, in particular

Pr[at least T (1/2 + 1/
√
N) ones in sample of size T] � 1/3.

Since the T queries of the algorithm can be viewed as sampling without replacement from a
set containing N/2 ones and N/2 zeros, this error probability is given by the hypergeometric
distribution

Pr[at least T (1/2 + 1/
√
N) ones in sample of size T] =

∑T

i=T (1/2+1/
√
N)

(
N/2
i

) · (
N/2
T−i

)
(
N

T

) .

We can approximate the hypergeometric distribution using the normal distribution (see e.g.
[19]). Let zk = (2k − T)/

√
T and .(z) = ∫ z

−∞
1√
2π

e−t2/2 dt , then the above probability
approaches

.(zT) − .(zT (1/2+1/
√
N)).

Note that .(zT) = .(
√
T) → 1 and that .(zT (1/2+1/

√
N)) = .(2

√
T/N) → 1/2 if

T ∈ o(N). Thus we can only avoid having an error probability close to 1/2 by using T ∈ �(N)

queries on X with |X| = N/2. A similar argument shows that we must also use �(N) queries
if |X| = N/2 + -. �

It now follows that:

Theorem 7.5. Runif(MAJ) ∈ �(N).

Proof. The previous lemma shows that any algorithm for MAJORITY needs �(N) queries on
inputs X with |X| ∈ [N/2, N/2 +

√
N]. Since the uniform distribution puts �(1) probability

on the set of such X, the theorem follows. �

Accordingly, on average a quantum computer can compute MAJORITY almost
quadratically faster than a classical computer, whereas for the worst-case input quantum and
classical computers are about equally fast (or slow).

8. Average-case complexity of PARITY

Finally we prove some results for the average-case complexity of PARITY. This is in many
ways the hardest Boolean function. Firstly, bsX(f) = N for all X, hence by theorem 6.3:

Corollary 8.1. For every µ, Rµ(PARITY) ∈ �(N) and Qµ(PARITY) ∈ �(
√
N).

With high probability we can obtain an exact count of |X|, using O(
√
(|X| + 1)N) quantum

queries [6]. Combining this with a µ that puts O(1/
√
N) probability on the set of all X with

|X| > 1 and distributes the remaining probability arbitrarily over the X with |X| � 1, we
obtain a distribution µ such that Qµ(PARITY) ∈ O(

√
N).

6752 A Ambainis and R de Wolf

We can proveQµ(PARITY) � N/6 for anyµ by the following algorithm: with probability
one-third output 1, with probability one-third output 0 and with probability one-third run the
exact quantum algorithm for PARITY, which has worst-case complexity N/2 [3, 13]. This
algorithm has success probability two-thirds on every input and has an expected number of
queries equal to N/6.

More than a linear speed-up on average is not possible if µ is uniform:

Theorem 8.2. Qunif(PARITY) ∈ �(N).

Proof. Let A be a bounded-error quantum algorithm for PARITY. Let B be an algorithm
that flips each bit of its input X with probability one-half, records the number b of actual
bitflips, runs A on the changed input Y and outputs A(Y) + bmod2. It is easy to see that B is
a bounded-error algorithm for PARITY and that it uses an expected number of T µ

A queries on
every input. Using standard techniques, we can turn this into an algorithm for PARITY with
worst-case O(T

µ

A) queries. Since the worst-case lower bound for PARITY is N/2 [3, 13], the
theorem follows. �

Acknowledgments

We thank Harry Buhrman for suggesting this topic, and him, Lance Fortnow, Lane
Hemaspaandra, Hein Röhrig, Alain Tapp and Umesh Vazirani for helpful discussions. Also
thanks to Alain for sending a draft of [6]. Part of this work was done when AA visited Microsoft
Research, supported by a Microsoft Research Fellowship and NSF grant CCR-9800024. RdW
was partially supported by the EU Fifth Framework project QAIP, IST–1999–11234 and is
also affiliated with the ILLC of the University of Amsterdam.

Appendix. Worst-case complexity of f

In this appendix we will show a lower bound of �(N) queries for the zero-error worst-case
complexity Q0(f) of the function f on N = n2n binary variables defined in section 4. (We
count binary queries this time.) Consider a quantum algorithm that makes at most T queries
and that, for every X, outputs either the correct output f (X) or, with probability � 1/2, outputs
‘inconclusive’. We use the following lemma from [3]:

Lemma A.1. The probability that a T -query quantum algorithm outputs 1 can be written as
a multilinear N -variate polynomial P(X) of degree at most 2T .

Consider the polynomial P induced by our T -query algorithm for f . It has the following
properties:

(1) P has degree d � 2T
(2) if f (X) = 0 then P(X) = 0
(3) if f (X) = 1 then P(X) ∈ [1/2, 1].

We first show that only very few inputs X ∈ {0, 1}N make f (X) = 1. The number of such
1 inputs for f is the number of ways to choose k ∈ {0, 1}n − {0n}, multiplied by the number
of ways to choose 2n/2 independent xi ∈ {0, 1}n, which is (2n − 1) · (2n)2n/2 < 2n(2n/2+1).
Accordingly, the fraction of 1 inputs among all 2N inputs X is < 2n(2n/2+1)/2n2n = 2−n(2n/2−1).
These X are exactly the X that make P(X) 	= 0. However, the following result is
known [22, 23]:

Average-case quantum query complexity 6753

Lemma A.2 (Schwartz). If P is a non-constant N -variate multilinear polynomial of degree
d, then

|{X ∈ {0, 1}N | P(X) 	= 0}|
2N

� 2−d .

This implies d � n(2n/2 − 1) and hence T � d/2 � n(2n/4 − 2) ≈ N/4. Thus we have
proved that the worst-case zero-error quantum complexity of f is near maximal:

Theorem A.3. Q0(f) ∈ �(N).

References

[1] Alon N and Spencer J H 1992 The Probabilistic Method (New York: Wiley)
[2] Alonso L, Reingold E M and Schott R 1997 The average-case complexity of determining the majority SIAM J.

Comput. 26 1–14
[3] Beals R, Buhrman H, Cleve R, Mosca M and de Wolf R 1998 Quantum lower bounds by polynomials Proc.

39th IEEE FOCS pp 352–61
(Beals R, Buhrman H, Cleve R, Mosca M and de Wolf R 1998 Preprint quant-ph/9802049)

[4] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 Strengths and weaknesses of quantum computing
SIAM J. Comput. 26 1510–23

(Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 Preprint quant-ph/9701001)
[5] Boyer M, Brassard G, Høyer P and Tapp A 1998 Tight bounds on quantum searching Fortschr. Phys. 46 493–505

(Boyer M, Brassard G, Høyer P and Tapp A 1996 Earlier version presented at Physcomp’96 Preprint quant-
ph/9605034)

[6] Brassard G, Høyer P, Mosca M and Tapp A 2000 Quantum amplitude amplification and estimation Preprint
quant-ph/0005055 (this is the forthcoming journal version of [8, 17])

[7] Brassard G, Høyer P and Tapp A 1997 Quantum algorithm for the collision problem ACM SIGACT News
(Cryptol. Column) 28 14–9

(Brassard G, Høyer P and Tapp A 1997 Preprint quant-ph/9705002)
[8] Brassard G, Høyer P and Tapp A 1998 Quantum counting Proc. 25th ICALP (Lecture Notes in Computer Science

vol 1443) (Berlin: Springer) pp 820–31
(Brassard G, Høyer P and Tapp A 1998 Preprint quant-ph/9805082)

[9] Buhrman H, Dürr Ch, Heiligman M, Høyer P, Magniez F, Santha M and de Wolf R 2001 Quantum algorithms
for element distinctness Proc. 16th IEEE Conf. on Computational Complexity pp 131–7

(Buhrman H, Dürr Ch, Heiligman M, Høyer P, Magniez F, Santha M and de Wolf R 2000 Preprint quant-
ph/0007016)

[10] Buhrman H and de Wolf R 2001 Complexity measures and decision tree complexity: a survey Theor. Comput.
Sci. at press

[11] Cleve R 2000 The query complexity of order-finding Proc. 15th IEEE Conf. on Computational Complexity
pp 54–9

(Cleve R 1999 Preprint quant-ph/9911124)
[12] Deutsch D and Jozsa R 1992 Rapid solution of problems by quantum computation Proc. R. Soc. A 439 553–8
[13] Farhi E, Goldstone J, Gutmann S and Sipser M 1998 A limit on the speed of quantum computation in determining

parity Phys. Rev. Lett. 81 5442–4
(Farhi E, Goldstone J, Gutmann S and Sipser M 1998 Preprint quant-ph/9802045)

[14] Grover L K 1996 A fast quantum mechanical algorithm for database search Proc. 28th ACM STOC pp 212–9
(Grover L K 1996 Preprint quant-ph/9605043)

[15] Hemaspaandra E, Hemaspaandra L A and Zimand M 1999 Almost-everywhere superiority for quantum
polynomial time Preprint quant-ph/9910033

[16] Levin L A 1986 Average case complete problems SIAM J. Comput. 15 285–6 (earlier version in STOC’84)
[17] Mosca M 1998 Quantum searching, counting and amplitude amplification by eigenvector analysis MFCS’98

Workshop on Randomized Algorithms
[18] Nayak A and Wu F 1999 The quantum query complexity of approximating the median and related statistics

Proc. 31st ACM STOC pp 384–93
(Nayak A and Wu F 1998 Preprint quant-ph/9804066)

[19] Nicholson W L 1956 On the normal approximation to the hypergeometric distribution Ann. Math. Stat. 27
471–83

6754 A Ambainis and R de Wolf

[20] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[21] Nisan N 1991 CREW PRAMs and decision trees SIAM J. Comput. 20 999–1007 (earlier version in STOC’89)
[22] Nisan N and Szegedy M 1994 On the degree of Boolean functions as real polynomials Comput. Complexity 4

301–13 (earlier version in STOC’92)
[23] Schwartz J T 1980 Fast probabilistic algorithms for verification of polynomial identities J. ACM 27 701–17
[24] Shor P W 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer SIAM J. Comput. 26 1484–509 (earlier version presented at FOCS’94)
(Shor P W 1995 Preprint quant-ph/9508027)

[25] Simon D 1997 On the power of quantum computation SIAM J. Comput. 26 1474–83 (earlier version in FOCS’94)
[26] Vitter J S and Flajolet Ph 1990 Average-case analysis of algorithms and data structures Handbook of Theoretical

Computer Science. A: Algorithms and Complexity ed J van Leeuwen (Cambridge: MIT Press) pp 431–524
[27] Zalka Ch 1999 Grover’s quantum searching algorithm is optimal Phys. Rev. A 60 2746–51

(Zalka Ch 1997 Preprint quant-ph/9711070)

